Papers
Topics
Authors
Recent
2000 character limit reached

Optimizing LLMs Using Quantization for Mobile Execution (2512.06490v1)

Published 6 Dec 2025 in cs.LG

Abstract: LLMs offer powerful capabilities, but their significant size and computational requirements hinder deployment on resource-constrained mobile devices. This paper investigates Post-Training Quantization (PTQ) for compressing LLMs for mobile execution. We apply 4-bit PTQ using the BitsAndBytes library with the Hugging Face Transformers framework to Meta's Llama 3.2 3B model. The quantized model is converted to GGUF format using llama.cpp tools for optimized mobile inference. The PTQ workflow achieves a 68.66% reduction in model size through 4-bit quantization, enabling the Llama 3.2 3B model to run efficiently on an Android device. Qualitative validation shows that the 4-bit quantized model can perform inference tasks successfully. We demonstrate the feasibility of running the quantized GGUF model on an Android device using the Termux environment and the Ollama framework. PTQ, especially at 4-bit precision combined with mobile-optimized formats like GGUF, provides a practical pathway for deploying capable LLMs on mobile devices, balancing model size and performance.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.