BitStopper: An Efficient Transformer Attention Accelerator via Stage-fusion and Early Termination (2512.06457v1)
Abstract: Attention-based LLMs have transformed modern AI applications, but the quadratic cost of self-attention imposes significant compute and memory overhead. Dynamic sparsity (DS) attention mitigates this, yet its hardware efficiency is limited by the added prediction stage and the heavy memory traffic it entails. To address these limitations, this paper proposes BitStopper, a fine-grained algorithm-architecture co-design that operates without a sparsity predictor. First, a bit-serial enable stage fusion (BESF) mechanism is proposed to reuse and minimize the memory access by progressively terminating trivial tokens and merging the prediction stage into the execution stage. Second, a lightweight and adaptive token selection (LATS) strategy is developed to work in concert with the bit-level sparsity speculation. Third, a bit-level asynchronous processing (BAP) strategy is employed to improve compute utilization during the on-demand bit-grained memory fetching. Finally, an elaborate architecture is designed to translate the theoretical complexity reduction into practical performance improvement. Extensive evaluations demonstrate that, compared to state-of-the-art (SOTA) Transformer accelerators, BitStopper achieves 2.03x and 1.89x speedups over Sanger and SOFA, respectively, while delivering 2.4x and 2.1x improvements in energy efficiency.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.