Theoretical Compression Bounds for Wide Multilayer Perceptrons (2512.06288v1)
Abstract: Pruning and quantization techniques have been broadly successful in reducing the number of parameters needed for large neural networks, yet theoretical justification for their empirical success falls short. We consider a randomized greedy compression algorithm for pruning and quantization post-training and use it to rigorously show the existence of pruned/quantized subnetworks of multilayer perceptrons (MLPs) with competitive performance. We further extend our results to structured pruning of MLPs and convolutional neural networks (CNNs), thus providing a unified analysis of pruning in wide networks. Our results are free of data assumptions, and showcase a tradeoff between compressibility and network width. The algorithm we consider bears some similarities with Optimal Brain Damage (OBD) and can be viewed as a post-training randomized version of it. The theoretical results we derive bridge the gap between theory and application for pruning/quantization, and provide a justification for the empirical success of compression in wide multilayer perceptrons.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.