Papers
Topics
Authors
Recent
2000 character limit reached

PRiSM: An Agentic Multimodal Benchmark for Scientific Reasoning via Python-Grounded Evaluation (2512.05930v1)

Published 5 Dec 2025 in cs.AI

Abstract: Evaluating vision-LLMs (VLMs) in scientific domains like mathematics and physics poses unique challenges that go far beyond predicting final answers. These domains demand conceptual understanding, symbolic reasoning, and adherence to formal laws, requirements that most existing benchmarks fail to address. In particular, current datasets tend to be static, lacking intermediate reasoning steps, robustness to variations, or mechanisms for verifying scientific correctness. To address these limitations, we introduce PRiSM, a synthetic, fully dynamic, and multimodal benchmark for evaluating scientific reasoning via grounded Python code. PRiSM includes over 24,750 university-level physics and math problems, and it leverages our scalable agent-based pipeline, PrismAgent, to generate well-structured problem instances. Each problem contains dynamic textual and visual input, a generated figure, alongside rich structured outputs: executable Python code for ground truth generation and verification, and detailed step-by-step reasoning. The dynamic nature and Python-powered automated ground truth generation of our benchmark allow for fine-grained experimental auditing of multimodal VLMs, revealing failure modes, uncertainty behaviors, and limitations in scientific reasoning. To this end, we propose five targeted evaluation tasks covering generalization, symbolic program synthesis, perturbation robustness, reasoning correction, and ambiguity resolution. Through comprehensive evaluation of existing VLMs, we highlight their limitations and showcase how PRiSM enables deeper insights into their scientific reasoning capabilities.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.