Papers
Topics
Authors
Recent
2000 character limit reached

FNOPT: Resolution-Agnostic, Self-Supervised Cloth Simulation using Meta-Optimization with Fourier Neural Operators (2512.05762v1)

Published 5 Dec 2025 in cs.CV and cs.GR

Abstract: We present FNOpt, a self-supervised cloth simulation framework that formulates time integration as an optimization problem and trains a resolution-agnostic neural optimizer parameterized by a Fourier neural operator (FNO). Prior neural simulators often rely on extensive ground truth data or sacrifice fine-scale detail, and generalize poorly across resolutions and motion patterns. In contrast, FNOpt learns to simulate physically plausible cloth dynamics and achieves stable and accurate rollouts across diverse mesh resolutions and motion patterns without retraining. Trained only on a coarse grid with physics-based losses, FNOpt generalizes to finer resolutions, capturing fine-scale wrinkles and preserving rollout stability. Extensive evaluations on a benchmark cloth simulation dataset demonstrate that FNOpt outperforms prior learning-based approaches in out-of-distribution settings in both accuracy and robustness. These results position FNO-based meta-optimization as a compelling alternative to previous neural simulators for cloth, thus reducing the need for curated data and improving cross-resolution reliability.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.