Efficient Text Classification with Conformal In-Context Learning (2512.05732v1)
Abstract: LLMs demonstrate strong in-context learning abilities, yet their effectiveness in text classification depends heavily on prompt design and incurs substantial computational cost. Conformal In-Context Learning (CICLe) has been proposed as a resource-efficient framework that integrates a lightweight base classifier with Conformal Prediction to guide LLM prompting by adaptively reducing the set of candidate classes. However, its broader applicability and efficiency benefits beyond a single domain have not yet been systematically explored. In this paper, we present a comprehensive evaluation of CICLe across diverse NLP classification benchmarks. The results show that CICLe consistently improves over its base classifier and outperforms few-shot prompting baselines when the sample size is sufficient for training the base classifier, and performs comparably in low-data regimes. In terms of efficiency, CICLe reduces the number of shots and prompt length by up to 34.45% and 25.16%, respectively, and enables the use of smaller models with competitive performance. CICLe is furthermore particularly advantageous for text classification tasks with high class imbalance. These findings highlight CICLe as a practical and scalable approach for efficient text classification, combining the robustness of traditional classifiers with the adaptability of LLMs, and achieving substantial gains in data and computational efficiency.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.