Papers
Topics
Authors
Recent
2000 character limit reached

Faithfulness metric fusion: Improving the evaluation of LLM trustworthiness across domains (2512.05700v1)

Published 5 Dec 2025 in cs.CL and cs.AI

Abstract: We present a methodology for improving the accuracy of faithfulness evaluation in LLMs. The proposed methodology is based on the combination of elementary faithfulness metrics into a combined (fused) metric, for the purpose of improving the faithfulness of LLM outputs. The proposed strategy for metric fusion deploys a tree-based model to identify the importance of each metric, which is driven by the integration of human judgements evaluating the faithfulness of LLM responses. This fused metric is demonstrated to correlate more strongly with human judgements across all tested domains for faithfulness. Improving the ability to evaluate the faithfulness of LLMs, allows for greater confidence to be placed within models, allowing for their implementation in a greater diversity of scenarios. Additionally, we homogenise a collection of datasets across question answering and dialogue-based domains and implement human judgements and LLM responses within this dataset, allowing for the reproduction and trialling of faithfulness evaluation across domains.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.