Papers
Topics
Authors
Recent
2000 character limit reached

The T12 System for AudioMOS Challenge 2025: Audio Aesthetics Score Prediction System Using KAN- and VERSA-based Models (2512.05592v1)

Published 5 Dec 2025 in cs.SD and eess.AS

Abstract: We propose an audio aesthetics score (AES) prediction system by CyberAgent (AESCA) for AudioMOS Challenge 2025 (AMC25) Track 2. The AESCA comprises a Kolmogorov--Arnold Network (KAN)-based audiobox aesthetics and a predictor from the metric scores using the VERSA toolkit. In the KAN-based predictor, we replaced each multi-layer perceptron layer in the baseline model with a group-rational KAN and trained the model with labeled and pseudo-labeled audio samples. The VERSA-based predictor was designed as a regression model using extreme gradient boosting, incorporating outputs from existing metrics. Both the KAN- and VERSA-based models predicted the AES, including the four evaluation axes. The final AES values were calculated using an ensemble model that combined four KAN-based models and a VERSA-based model. Our proposed T12 system yielded the best correlations among the submitted systems, in three axes at the utterance level, two axes at the system level, and the overall average.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 14 likes about this paper.