Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Unified AI System For Data Quality Control and DataOps Management in Regulated Environments

Published 5 Dec 2025 in q-fin.CP | (2512.05559v1)

Abstract: In regulated domains such as finance, the integrity and governance of data pipelines are critical - yet existing systems treat data quality control (QC) as an isolated preprocessing step rather than a first-class system component. We present a unified AI-driven Data QC and DataOps Management framework that embeds rule-based, statistical, and AI-based QC methods into a continuous, governed layer spanning ingestion, model pipelines, and downstream applications. Our architecture integrates open-source tools with custom modules for profiling, audit logging, breach handling, configuration-driven policies, and dynamic remediation. We demonstrate deployment in a production-grade financial setup: handling streaming and tabular data across multiple asset classes and transaction streams, with configurable thresholds, cloud-native storage interfaces, and automated alerts. We show empirical gains in anomaly detection recall, reduction of manual remediation effort, and improved auditability and traceability in high-throughput data workflows. By treating QC as a system concern rather than an afterthought, our framework provides a foundation for trustworthy, scalable, and compliant AI pipelines in regulated environments.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.