Papers
Topics
Authors
Recent
2000 character limit reached

2K-Characters-10K-Stories: A Quality-Gated Stylized Narrative Dataset with Disentangled Control and Sequence Consistency

Published 5 Dec 2025 in cs.CV and cs.AI | (2512.05557v1)

Abstract: Sequential identity consistency under precise transient attribute control remains a long-standing challenge in controllable visual storytelling. Existing datasets lack sufficient fidelity and fail to disentangle stable identities from transient attributes, limiting structured control over pose, expression, and scene composition and thus constraining reliable sequential synthesis. To address this gap, we introduce \textbf{2K-Characters-10K-Stories}, a multi-modal stylized narrative dataset of \textbf{2{,}000} uniquely stylized characters appearing across \textbf{10{,}000} illustration stories. It is the first dataset that pairs large-scale unique identities with explicit, decoupled control signals for sequential identity consistency. We introduce a \textbf{Human-in-the-Loop pipeline (HiL)} that leverages expert-verified character templates and LLM-guided narrative planning to generate highly-aligned structured data. A \textbf{decoupled control} scheme separates persistent identity from transient attributes -- pose and expression -- while a \textbf{Quality-Gated loop} integrating MMLM evaluation, Auto-Prompt Tuning, and Local Image Editing enforces pixel-level consistency. Extensive experiments demonstrate that models fine-tuned on our dataset achieves performance comparable to closed-source models in generating visual narratives.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.