Papers
Topics
Authors
Recent
2000 character limit reached

On the Theoretical Foundation of Sparse Dictionary Learning in Mechanistic Interpretability (2512.05534v1)

Published 5 Dec 2025 in cs.LG and cs.AI

Abstract: As AI models achieve remarkable capabilities across diverse domains, understanding what representations they learn and how they process information has become increasingly important for both scientific progress and trustworthy deployment. Recent works in mechanistic interpretability have shown that neural networks represent meaningful concepts as directions in their representation spaces and often encode many concepts in superposition. Various sparse dictionary learning (SDL) methods, including sparse autoencoders, transcoders, and crosscoders, address this by training auxiliary models with sparsity constraints to disentangle these superposed concepts into interpretable features. These methods have demonstrated remarkable empirical success but have limited theoretical understanding. Existing theoretical work is limited to sparse autoencoders with tied-weight constraints, leaving the broader family of SDL methods without formal grounding. In this work, we develop the first unified theoretical framework considering SDL as one unified optimization problem. We demonstrate how diverse methods instantiate the theoretical framwork and provide rigorous analysis on the optimization landscape. We provide the first theoretical explanations for some empirically observed phenomena, including feature absorption, dead neurons, and the neuron resampling technique. We further design controlled experiments to validate our theoretical results.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.