Papers
Topics
Authors
Recent
2000 character limit reached

Credal and Interval Deep Evidential Classifications (2512.05526v1)

Published 5 Dec 2025 in cs.LG, math.ST, and stat.ME

Abstract: Uncertainty Quantification (UQ) presents a pivotal challenge in the field of AI, profoundly impacting decision-making, risk assessment and model reliability. In this paper, we introduce Credal and Interval Deep Evidential Classifications (CDEC and IDEC, respectively) as novel approaches to address UQ in classification tasks. CDEC and IDEC leverage a credal set (closed and convex set of probabilities) and an interval of evidential predictive distributions, respectively, allowing us to avoid overfitting to the training data and to systematically assess both epistemic (reducible) and aleatoric (irreducible) uncertainties. When those surpass acceptable thresholds, CDEC and IDEC have the capability to abstain from classification and flag an excess of epistemic or aleatoric uncertainty, as relevant. Conversely, within acceptable uncertainty bounds, CDEC and IDEC provide a collection of labels with robust probabilistic guarantees. CDEC and IDEC are trained using standard backpropagation and a loss function that draws from the theory of evidence. They overcome the shortcomings of previous efforts, and extend the current evidential deep learning literature. Through extensive experiments on MNIST, CIFAR-10 and CIFAR-100, together with their natural OoD shifts (F-MNIST/K-MNIST, SVHN/Intel, TinyImageNet), we show that CDEC and IDEC achieve competitive predictive accuracy, state-of-the-art OoD detection under epistemic and total uncertainty, and tight, well-calibrated prediction regions that expand reliably under distribution shift. An ablation over ensemble size further demonstrates that CDEC attains stable uncertainty estimates with only a small ensemble.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 33 likes about this paper.