LoC-Path: Learning to Compress for Pathology Multimodal Large Language Models (2512.05391v1)
Abstract: Whole Slide Image (WSI) understanding is fundamentally challenging due to its gigapixel scale and the extreme sparsity of diagnostically relevant regions. Unlike human experts who primarily rely on key areas to arrive at a diagnosis, existing slide-level multimodal LLMs (MLLMs) for pathology rely on heavy slide-level encoders that process thousands of patch features in a brute-force manner, resulting in excessive computational cost. In this work, we revisit the WSI-language modeling paradigm and show that tile-level features exhibit strong global and local redundancy, whereas only a small subset of tiles are truly task-relevant. Motivated by this observation, we introduce an efficient MLLM framework, called LoC-Path, that replaces the expensive slide-level encoder with redundancy-reducing modules. We first design a Sparse Token Merger (STM) and an MAE-pretrained resampler to remove local redundancy and compress globally redundant tile tokens into a compact slide-level representation set. We then propose a Cross-Attention Routing Adapter (CARA) and a Token Importance Scorer (TIS) to integrate the compressed visual representation with the LLM in a computation-efficient manner. Extensive experiments demonstrate that our approach achieves performance comparable to existing state-of-the-art whole-slide MLLMs, while requiring significantly lower computation and memory.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.