Papers
Topics
Authors
Recent
2000 character limit reached

Uncertainty Quantification for Scientific Machine Learning using Sparse Variational Gaussian Process Kolmogorov-Arnold Networks (SVGP KAN) (2512.05306v1)

Published 4 Dec 2025 in cs.LG and stat.ML

Abstract: Kolmogorov-Arnold Networks have emerged as interpretable alternatives to traditional multi-layer perceptrons. However, standard implementations lack principled uncertainty quantification capabilities essential for many scientific applications. We present a framework integrating sparse variational Gaussian process inference with the Kolmogorov-Arnold topology, enabling scalable Bayesian inference with computational complexity quasi-linear in sample size. Through analytic moment matching, we propagate uncertainty through deep additive structures while maintaining interpretability. We use three example studies to demonstrate the framework's ability to distinguish aleatoric from epistemic uncertainty: calibration of heteroscedastic measurement noise in fluid flow reconstruction, quantification of prediction confidence degradation in multi-step forecasting of advection-diffusion dynamics, and out-of-distribution detection in convolutional autoencoders. These results suggest Sparse Variational Gaussian Process Kolmogorov-Arnold Networks (SVGP KANs) is a promising architecture for uncertainty-aware learning in scientific machine learning.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.