Papers
Topics
Authors
Recent
2000 character limit reached

Differential ML with a Difference (2512.05301v1)

Published 4 Dec 2025 in q-fin.PR

Abstract: Differential ML (Huge and Savine 2020) is a technique for training neural networks to provide fast approximations to complex simulation-based models for derivatives pricing and risk management. It uses price sensitivities calculated through pathwise adjoint differentiation to reduce pricing and hedging errors. However, for options with discontinuous payoffs, such as digital or barrier options, the pathwise sensitivities are biased, and incorporating them into the loss function can magnify errors. We consider alternative methods for estimating sensitivities and find that they can substantially reduce test errors in prices and in their sensitivities. Using differential labels calculated through the likelihood ratio method expands the scope of Differential ML to discontinuous payoffs. A hybrid method incorporates gamma estimates as well as delta estimates, providing further regularization.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 4 likes about this paper.