Papers
Topics
Authors
Recent
2000 character limit reached

CFO: Learning Continuous-Time PDE Dynamics via Flow-Matched Neural Operators (2512.05297v1)

Published 4 Dec 2025 in cs.LG, cs.AI, and math.NA

Abstract: Neural operator surrogates for time-dependent partial differential equations (PDEs) conventionally employ autoregressive prediction schemes, which accumulate error over long rollouts and require uniform temporal discretization. We introduce the Continuous Flow Operator (CFO), a framework that learns continuous-time PDE dynamics without the computational burden of standard continuous approaches, e.g., neural ODE. The key insight is repurposing flow matching to directly learn the right-hand side of PDEs without backpropagating through ODE solvers. CFO fits temporal splines to trajectory data, using finite-difference estimates of time derivatives at knots to construct probability paths whose velocities closely approximate the true PDE dynamics. A neural operator is then trained via flow matching to predict these analytic velocity fields. This approach is inherently time-resolution invariant: training accepts trajectories sampled on arbitrary, non-uniform time grids while inference queries solutions at any temporal resolution through ODE integration. Across four benchmarks (Lorenz, 1D Burgers, 2D diffusion-reaction, 2D shallow water), CFO demonstrates superior long-horizon stability and remarkable data efficiency. CFO trained on only 25% of irregularly subsampled time points outperforms autoregressive baselines trained on complete data, with relative error reductions up to 87%. Despite requiring numerical integration at inference, CFO achieves competitive efficiency, outperforming autoregressive baselines using only 50% of their function evaluations, while uniquely enabling reverse-time inference and arbitrary temporal querying.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube