Papers
Topics
Authors
Recent
2000 character limit reached

AREA3D: Active Reconstruction Agent with Unified Feed-Forward 3D Perception and Vision-Language Guidance (2512.05131v1)

Published 28 Nov 2025 in cs.CV, cs.AI, and cs.RO

Abstract: Active 3D reconstruction enables an agent to autonomously select viewpoints to efficiently obtain accurate and complete scene geometry, rather than passively reconstructing scenes from pre-collected images. However, existing active reconstruction methods often rely on hand-crafted geometric heuristics, which can lead to redundant observations without substantially improving reconstruction quality. To address this limitation, we propose AREA3D, an active reconstruction agent that leverages feed-forward 3D reconstruction models and vision-language guidance. Our framework decouples view-uncertainty modeling from the underlying feed-forward reconstructor, enabling precise uncertainty estimation without expensive online optimization. In addition, an integrated vision-LLM provides high-level semantic guidance, encouraging informative and diverse viewpoints beyond purely geometric cues. Extensive experiments on both scene-level and object-level benchmarks demonstrate that AREA3D achieves state-of-the-art reconstruction accuracy, particularly in the sparse-view regime. Code will be made available at: https://github.com/TianlingXu/AREA3D .

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.