Papers
Topics
Authors
Recent
2000 character limit reached

SuperActivators: Only the Tail of the Distribution Contains Reliable Concept Signals

Published 4 Dec 2025 in cs.LG | (2512.05038v1)

Abstract: Concept vectors aim to enhance model interpretability by linking internal representations with human-understandable semantics, but their utility is often limited by noisy and inconsistent activations. In this work, we uncover a clear pattern within the noise, which we term the SuperActivator Mechanism: while in-concept and out-of-concept activations overlap considerably, the token activations in the extreme high tail of the in-concept distribution provide a reliable signal of concept presence. We demonstrate the generality of this mechanism by showing that SuperActivator tokens consistently outperform standard vector-based and prompting concept detection approaches, achieving up to a 14% higher F1 score across image and text modalities, model architectures, model layers, and concept extraction techniques. Finally, we leverage SuperActivator tokens to improve feature attributions for concepts.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.