Papers
Topics
Authors
Recent
2000 character limit reached

Dual-Stream Spectral Decoupling Distillation for Remote Sensing Object Detection (2512.04413v1)

Published 4 Dec 2025 in cs.CV and cs.AI

Abstract: Knowledge distillation is an effective and hardware-friendly method, which plays a key role in lightweighting remote sensing object detection. However, existing distillation methods often encounter the issue of mixed features in remote sensing images (RSIs), and neglect the discrepancies caused by subtle feature variations, leading to entangled knowledge confusion. To address these challenges, we propose an architecture-agnostic distillation method named Dual-Stream Spectral Decoupling Distillation (DS2D2) for universal remote sensing object detection tasks. Specifically, DS2D2 integrates explicit and implicit distillation grounded in spectral decomposition. Firstly, the first-order wavelet transform is applied for spectral decomposition to preserve the critical spatial characteristics of RSIs. Leveraging this spatial preservation, a Density-Independent Scale Weight (DISW) is designed to address the challenges of dense and small object detection common in RSIs. Secondly, we show implicit knowledge hidden in subtle student-teacher feature discrepancies, which significantly influence predictions when activated by detection heads. This implicit knowledge is extracted via full-frequency and high-frequency amplifiers, which map feature differences to prediction deviations. Extensive experiments on DIOR and DOTA datasets validate the effectiveness of the proposed method. Specifically, on DIOR dataset, DS2D2 achieves improvements of 4.2% in AP50 for RetinaNet and 3.8% in AP50 for Faster R-CNN, outperforming existing distillation approaches. The source code will be available at https://github.com/PolarAid/DS2D2.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

GitHub