Papers
Topics
Authors
Recent
2000 character limit reached

Fourier-Attentive Representation Learning: A Fourier-Guided Framework for Few-Shot Generalization in Vision-Language Models (2512.04395v1)

Published 4 Dec 2025 in cs.CV

Abstract: Large-scale pre-trained Vision-LLMs (VLMs) have demonstrated strong few-shot learning capabilities. However, these methods typically learn holistic representations where an image's domain-invariant structure is implicitly entangled with its domain-specific style. This presents an opportunity to further enhance generalization by disentangling these visual cues. In this paper, we propose Fourier-Attentive Representation Learning (FARL), a novel framework that addresses this by explicitly disentangling visual representations using Fourier analysis. The core of our method is a dual cross-attention mechanism, where learnable representation tokens separately query an image's structural features (from the phase spectrum) and stylistic features (from the amplitude spectrum). This process yields enriched, disentangled tokens that are then injected deep into the VLM encoders to guide adaptation. Our design, which includes an asymmetric injection strategy, forces the model to learn a more robust vision-language alignment. Extensive experiments on 15 datasets demonstrate the effectiveness of our approach.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.