Counting Without Running: Evaluating LLMs' Reasoning About Code Complexity
Abstract: Modern GPU software stacks demand developers who can anticipate performance bottlenecks before ever launching a kernel; misjudging floating-point workloads upstream can derail tuning, scheduling, and even hardware procurement. Yet despite rapid progress in code generation, today's LLMs are rarely tested on this kind of forward-looking reasoning. We close that gap with gpuFLOPBench, a benchmark that asks models to "count without running" by predicting single and double-precision FLOP counts for 577 CUDA kernels drawn from HeCBench, annotated with ground-truth profiles and eight execution attributes that distinguish trivially analyzable code from kernels whose FLOPs depend on hidden compiler or runtime behavior. Evaluating current closed-source reasoning models shows clear but uneven progress: the newest LLMs achieve perfect classification on straightforward kernels but still incur multiple order-of-magnitude errors whenever implicit FLOPs arise from division, intrinsic math functions, or common subexpressions. These results surface a core limitation of existing code assistants -- the inability to internalize hardware-specific microcode effects -- and position gpuFLOPBench as a focused testbed for developing LLM tooling that can reason about performance with the same rigor as experienced GPU developers. Sources are available at our repository: https://github.com/Scientific-Computing-Lab/gpuFLOPBench
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.