Papers
Topics
Authors
Recent
2000 character limit reached

RNNs perform task computations by dynamically warping neural representations (2512.04310v1)

Published 3 Dec 2025 in cs.LG, math.DG, math.DS, and q-bio.NC

Abstract: Analysing how neural networks represent data features in their activations can help interpret how they perform tasks. Hence, a long line of work has focused on mathematically characterising the geometry of such "neural representations." In parallel, machine learning has seen a surge of interest in understanding how dynamical systems perform computations on time-varying input data. Yet, the link between computation-through-dynamics and representational geometry remains poorly understood. Here, we hypothesise that recurrent neural networks (RNNs) perform computations by dynamically warping their representations of task variables. To test this hypothesis, we develop a Riemannian geometric framework that enables the derivation of the manifold topology and geometry of a dynamical system from the manifold of its inputs. By characterising the time-varying geometry of RNNs, we show that dynamic warping is a fundamental feature of their computations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.