Papers
Topics
Authors
Recent
2000 character limit reached

Retrieval-Augmented Few-Shot Prompting Versus Fine-Tuning for Code Vulnerability Detection (2512.04106v1)

Published 28 Nov 2025 in cs.SE, cs.AI, cs.CL, and cs.CR

Abstract: Few-shot prompting has emerged as a practical alternative to fine-tuning for leveraging the capabilities of LLMs in specialized tasks. However, its effectiveness depends heavily on the selection and quality of in-context examples, particularly in complex domains. In this work, we examine retrieval-augmented prompting as a strategy to improve few-shot performance in code vulnerability detection, where the goal is to identify one or more security-relevant weaknesses present in a given code snippet from a predefined set of vulnerability categories. We perform a systematic evaluation using the Gemini-1.5-Flash model across three approaches: (1) standard few-shot prompting with randomly selected examples, (2) retrieval-augmented prompting using semantically similar examples, and (3) retrieval-based labeling, which assigns labels based on retrieved examples without model inference. Our results show that retrieval-augmented prompting consistently outperforms the other prompting strategies. At 20 shots, it achieves an F1 score of 74.05% and a partial match accuracy of 83.90%. We further compare this approach against zero-shot prompting and several fine-tuned models, including Gemini-1.5-Flash and smaller open-source models such as DistilBERT, DistilGPT2, and CodeBERT. Retrieval-augmented prompting outperforms both zero-shot (F1 score: 36.35%, partial match accuracy: 20.30%) and fine-tuned Gemini (F1 score: 59.31%, partial match accuracy: 53.10%), while avoiding the training time and cost associated with model fine-tuning. On the other hand, fine-tuning CodeBERT yields higher performance (F1 score: 91.22%, partial match accuracy: 91.30%) but requires additional training, maintenance effort, and resources.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.