Papers
Topics
Authors
Recent
2000 character limit reached

Eval Factsheets: A Structured Framework for Documenting AI Evaluations (2512.04062v1)

Published 3 Dec 2025 in cs.LG

Abstract: The rapid proliferation of benchmarks has created significant challenges in reproducibility, transparency, and informed decision-making. However, unlike datasets and models -- which benefit from structured documentation frameworks like Datasheets and Model Cards -- evaluation methodologies lack systematic documentation standards. We introduce Eval Factsheets, a structured, descriptive framework for documenting AI system evaluations through a comprehensive taxonomy and questionnaire-based approach. Our framework organizes evaluation characteristics across five fundamental dimensions: Context (Who made the evaluation and when?), Scope (What does it evaluate?), Structure (With what the evaluation is built?), Method (How does it work?) and Alignment (In what ways is it reliable/valid/robust?). We implement this taxonomy as a practical questionnaire spanning five sections with mandatory and recommended documentation elements. Through case studies on multiple benchmarks, we demonstrate that Eval Factsheets effectively captures diverse evaluation paradigms -- from traditional benchmarks to LLM-as-judge methodologies -- while maintaining consistency and comparability. We hope Eval Factsheets are incorporated into both existing and newly released evaluation frameworks and lead to more transparency and reproducibility.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.