Enhancing Instruction-Following Capabilities in Seq2Seq Models: DoLA Adaptations for T5 (2512.03803v1)
Abstract: Contrastive decoding is a lightweight and effective inference-time method that improves the quality of text generation in LLMs. However, algorithms such as DoLa (Decoding by Contrastive Layers) have only been implemented in decoder-only architectures and studied for their impact on improving factuality. This work adapts DoLa for the T5 and FLAN-T5 model families and evaluates its impact on the models' instruction following capabilities, which to our knowledge is the first implementation of a contrastive decoding strategy in an encoder-decoder architecture. Our results show that DoLa improves the faithfulness of text generation for certain categories of tasks and harms others. To understand these results, we present a layer-by-layer analysis of logit evolution in a FLAN-T5 model to quantify DoLa's impact on token output probabilities.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.