Papers
Topics
Authors
Recent
2000 character limit reached

Feature-aware Modulation for Learning from Temporal Tabular Data (2512.03678v1)

Published 3 Dec 2025 in cs.LG

Abstract: While tabular machine learning has achieved remarkable success, temporal distribution shifts pose significant challenges in real-world deployment, as the relationships between features and labels continuously evolve. Static models assume fixed mappings to ensure generalization, whereas adaptive models may overfit to transient patterns, creating a dilemma between robustness and adaptability. In this paper, we analyze key factors essential for constructing an effective dynamic mapping for temporal tabular data. We discover that evolving feature semantics-particularly objective and subjective meanings-introduce concept drift over time. Crucially, we identify that feature transformation strategies are able to mitigate discrepancies in feature representations across temporal stages. Motivated by these insights, we propose a feature-aware temporal modulation mechanism that conditions feature representations on temporal context, modulating statistical properties such as scale and skewness. By aligning feature semantics across time, our approach achieves a lightweight yet powerful adaptation, effectively balancing generalizability and adaptability. Benchmark evaluations validate the effectiveness of our method in handling temporal shifts in tabular data.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.