Papers
Topics
Authors
Recent
2000 character limit reached

Formal Analysis of the Sigmoid Function and Formal Proof of the Universal Approximation Theorem (2512.03635v1)

Published 3 Dec 2025 in cs.LO and cs.SE

Abstract: This paper presents a formalized analysis of the sigmoid function and a fully mechanized proof of the Universal Approximation Theorem (UAT) in Isabelle/HOL, a higher-order logic theorem prover. The sigmoid function plays a fundamental role in neural networks; yet, its formal properties, such as differentiability, higher-order derivatives, and limit behavior, have not previously been comprehensively mechanized in a proof assistant. We present a rigorous formalization of the sigmoid function, proving its monotonicity, smoothness, and higher-order derivatives. We provide a constructive proof of the UAT, demonstrating that neural networks with sigmoidal activation functions can approximate any continuous function on a compact interval. Our work identifies and addresses gaps in Isabelle/HOL's formal proof libraries and introduces simpler methods for reasoning about the limits of real functions. By exploiting theorem proving for AI verification, our work enhances trust in neural networks and contributes to the broader goal of verified and trustworthy machine learning.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 48 likes about this paper.