Papers
Topics
Authors
Recent
2000 character limit reached

Reason-Plan-ReAct: A Reasoner-Planner Supervising a ReAct Executor for Complex Enterprise Tasks (2512.03560v1)

Published 3 Dec 2025 in cs.AI and cs.MA

Abstract: Despite recent advances, autonomous agents often struggle to solve complex tasks in enterprise domains that require coordinating multiple tools and processing diverse data sources. This struggle is driven by two main limitations. First, single-agent architectures enforce a monolithic plan-execute loop, which directly causes trajectory instability. Second, the requirement to use local open-weight models for data privacy introduces smaller context windows leading to the rapid consumption of context from large tool outputs. To solve this problem we introduce RP-ReAct (Reasoner Planner-ReAct), a novel multi-agent approach that fundamentally decouples strategic planning from low-level execution to achieve superior reliability and efficiency. RP-ReAct consists of a Reasoner Planner Agent (RPA), responsible for planning each sub-step, continuously analysing the execution results using the strong reasoning capabilities of a Large Reasoning Model, and one or multiple Proxy-Execution Agent (PEA) that translates sub-steps into concrete tool interactions using a ReAct approach. Crucially, we incorporate a context-saving strategy within the PEA to mitigate context window overflow by managing large tool outputs via external storage and on-demand access. We evaluate RP-ReAct, on the challenging, multi-domain ToolQA benchmark using a diverse set of six open-weight reasoning models. Our empirical results show that RP-ReAct achieves superior performance and improved generalization ability over state-of-the-art baselines when addressing diverse complex tasks across the evaluated domains. Furthermore we establish the enhanced robustness and stability of our approach across different model scales, paving the way for effective and deployable agentic solutions for enterprises.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.