MOS: Mitigating Optical-SAR Modality Gap for Cross-Modal Ship Re-Identification (2512.03404v1)
Abstract: Cross-modal ship re-identification (ReID) between optical and synthetic aperture radar (SAR) imagery has recently emerged as a critical yet underexplored task in maritime intelligence and surveillance. However, the substantial modality gap between optical and SAR images poses a major challenge for robust identification. To address this issue, we propose MOS, a novel framework designed to mitigate the optical-SAR modality gap and achieve modality-consistent feature learning for optical-SAR cross-modal ship ReID. MOS consists of two core components: (1) Modality-Consistent Representation Learning (MCRL) applies denoise SAR image procession and a class-wise modality alignment loss to align intra-identity feature distributions across modalities. (2) Cross-modal Data Generation and Feature fusion (CDGF) leverages a brownian bridge diffusion model to synthesize cross-modal samples, which are subsequently fused with original features during inference to enhance alignment and discriminability. Extensive experiments on the HOSS ReID dataset demonstrate that MOS significantly surpasses state-of-the-art methods across all evaluation protocols, achieving notable improvements of +3.0%, +6.2%, and +16.4% in R1 accuracy under the ALL to ALL, Optical to SAR, and SAR to Optical settings, respectively. The code and trained models will be released upon publication.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.