Papers
Topics
Authors
Recent
2000 character limit reached

Scaling Internal-State Policy-Gradient Methods for POMDPs (2512.03204v1)

Published 2 Dec 2025 in cs.LG

Abstract: Policy-gradient methods have received increased attention recently as a mechanism for learning to act in partially observable environments. They have shown promise for problems admitting memoryless policies but have been less successful when memory is required. In this paper we develop several improved algorithms for learning policies with memory in an infinite-horizon setting -- directly when a known model of the environment is available, and via simulation otherwise. We compare these algorithms on some large POMDPs, including noisy robot navigation and multi-agent problems.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.