2000 character limit reached
Strengthening Han's Fourier Entropy-Influence Inequality via an Information-Theoretic Proof (2512.03117v1)
Published 2 Dec 2025 in cs.IT
Abstract: We strengthen Han's Fourier entropy-influence inequality $$ H[\widehat{f}] \leq C_{1}I(f) + C_{2}\sum_{i\in [n]}I_{i}(f)\ln\frac{1}{I_{i}(f)} $$ originally proved for ${-1,1}$-valued Boolean functions with $C_{1}=3+2\ln 2$ and $C_{2}=1$. We show, by a short information-theoretic proof, that it in fact holds with sharp constants $C_{1}=C_{2}=1$ for all real-valued Boolean functions of unit $L{2}$-norm, thereby establishing the inequality as an elementary structural property of Shannon entropy and influence.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.