Papers
Topics
Authors
Recent
2000 character limit reached

Globally optimized SVD compression of LLMs via Fermi-function-based rank selection and gauge fixing (2512.03062v1)

Published 26 Nov 2025 in cs.LG and stat.ML

Abstract: LLMs are very demanding in terms of their computational resources. Low-rank decompositions of LLM weights, e.g. via Singular Value Decomposition (SVD), is a promising approach for LLM compression, but presents several practical hurdles, e.g. selecting appropriate layer-wise ranks and getting rid of its parameter redundancy. In this work, we present two physics-inspired improvements to SVD LLM compression: (1) \textbf{FermiGrad}, a gradient-descent algorithm that determines globally optimal layer-wise ranks by relaxing the discrete singular-value truncation into a continuous optimization using the Fermi function; (2) \textbf{PivGa}, an additional \textit{lossless} compression of the low-rank factors that exploits the intrinsic gauge freedom in their parametrization.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 8 likes about this paper.