Papers
Topics
Authors
Recent
2000 character limit reached

Taming Camera-Controlled Video Generation with Verifiable Geometry Reward (2512.02870v1)

Published 2 Dec 2025 in cs.CV

Abstract: Recent advances in video diffusion models have remarkably improved camera-controlled video generation, but most methods rely solely on supervised fine-tuning (SFT), leaving online reinforcement learning (RL) post-training largely underexplored. In this work, we introduce an online RL post-training framework that optimizes a pretrained video generator for precise camera control. To make RL effective in this setting, we design a verifiable geometry reward that delivers dense segment-level feedback to guide model optimization. Specifically, we estimate the 3D camera trajectories for both generated and reference videos, divide each trajectory into short segments, and compute segment-wise relative poses. The reward function then compares each generated-reference segment pair and assigns an alignment score as the reward signal, which helps alleviate reward sparsity and improve optimization efficiency. Moreover, we construct a comprehensive dataset featuring diverse large-amplitude camera motions and scenes with varied subject dynamics. Extensive experiments show that our online RL post-training clearly outperforms SFT baselines across multiple aspects, including camera-control accuracy, geometric consistency, and visual quality, demonstrating its superiority in advancing camera-controlled video generation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.