Papers
Topics
Authors
Recent
2000 character limit reached

Towards Unification of Hallucination Detection and Fact Verification for Large Language Models (2512.02772v1)

Published 2 Dec 2025 in cs.CL and cs.IR

Abstract: LLMs frequently exhibit hallucinations, generating content that appears fluent and coherent but is factually incorrect. Such errors undermine trust and hinder their adoption in real-world applications. To address this challenge, two distinct research paradigms have emerged: model-centric Hallucination Detection (HD) and text-centric Fact Verification (FV). Despite sharing the same goal, these paradigms have evolved in isolation, using distinct assumptions, datasets, and evaluation protocols. This separation has created a research schism that hinders their collective progress. In this work, we take a decisive step toward bridging this divide. We introduce UniFact, a unified evaluation framework that enables direct, instance-level comparison between FV and HD by dynamically generating model outputs and corresponding factuality labels. Through large-scale experiments across multiple LLM families and detection methods, we reveal three key findings: (1) No paradigm is universally superior; (2) HD and FV capture complementary facets of factual errors; and (3) hybrid approaches that integrate both methods consistently achieve state-of-the-art performance. Beyond benchmarking, we provide the first in-depth analysis of why FV and HD diverged, as well as empirical evidence supporting the need for their unification. The comprehensive experimental results call for a new, integrated research agenda toward unifying Hallucination Detection and Fact Verification in LLMs. We have open-sourced all the code, data, and baseline implementation at: https://github.com/oneal2000/UniFact/

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 6 likes about this paper.