Papers
Topics
Authors
Recent
2000 character limit reached

Reinforcement learning for irreversible reinsurance problems: the randomized singular control approach (2512.02769v1)

Published 2 Dec 2025 in math.OC

Abstract: This paper studies the continuous-time reinforcement learning for stochastic singular control with the application to an infinite-horizon irreversible reinsurance problems. The singular control is equivalently characterized as a pair of regions of time and the augmented states, called the singular control law. To encourage the exploration in the learning procedure, we propose a randomization method for the singular control laws, new to the literature, by considering an auxiliary singular control and entropy regularization. The exploratory singular control problem is formulated as a two-stage optimal control problem, where the time-inconsistency issue arises in the outer problem. In the specific model setup with known model coefficients, we provide the full characterization of the time-consistent equilibrium singular controls for the two-stage problem. Taking advantage of the solution structure, we can consider the proper parameterization of the randomized equilibrium policy and the value function when the model is unknown and further devise the actor-critic reinforcement learning algorithms. In the numerical experiment, we present the superior convergence of parameter iterations towards the true values based on the randomized equilibrium policy and illustrate how the exploration may advance the learning performance in the context of singular controls.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 3 likes about this paper.