Adversarial Jamming for Autoencoder Distribution Matching (2512.02740v1)
Abstract: We propose the use of adversarial wireless jamming to regularise the latent space of an autoencoder to match a diagonal Gaussian distribution. We consider the minimisation of a mean squared error distortion, where a jammer attempts to disrupt the recovery of a Gaussian source encoded and transmitted over the adversarial channel. A straightforward consequence of existing theoretical results is the fact that the saddle point of a minimax game - involving such an encoder, its corresponding decoder, and an adversarial jammer - consists of diagonal Gaussian noise output by the jammer. We use this result as inspiration for a novel approach to distribution matching in the latent space, utilising jamming as an auxiliary objective to encourage the aggregated latent posterior to match a diagonal Gaussian distribution. Using this new technique, we achieve distribution matching comparable to standard variational autoencoders and to Wasserstein autoencoders. This approach can also be generalised to other latent distributions.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.