Papers
Topics
Authors
Recent
2000 character limit reached

Unsupervised Structural Scene Decomposition via Foreground-Aware Slot Attention with Pseudo-Mask Guidance (2512.02685v1)

Published 2 Dec 2025 in cs.CV

Abstract: Recent advances in object-centric representation learning have shown that slot attention-based methods can effectively decompose visual scenes into object slot representations without supervision. However, existing approaches typically process foreground and background regions indiscriminately, often resulting in background interference and suboptimal instance discovery performance on real-world data. To address this limitation, we propose Foreground-Aware Slot Attention (FASA), a two-stage framework that explicitly separates foreground from background to enable precise object discovery. In the first stage, FASA performs a coarse scene decomposition to distinguish foreground from background regions through a dual-slot competition mechanism. These slots are initialized via a clustering-based strategy, yielding well-structured representations of salient regions. In the second stage, we introduce a masked slot attention mechanism where the first slot captures the background while the remaining slots compete to represent individual foreground objects. To further address over-segmentation of foreground objects, we incorporate pseudo-mask guidance derived from a patch affinity graph constructed with self-supervised image features to guide the learning of foreground slots. Extensive experiments on both synthetic and real-world datasets demonstrate that FASA consistently outperforms state-of-the-art methods, validating the effectiveness of explicit foreground modeling and pseudo-mask guidance for robust scene decomposition and object-coherent representation. Code will be made publicly available.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.