Papers
Topics
Authors
Recent
2000 character limit reached

From Panel to Pixel: Zoom-In Vision-Language Pretraining from Biomedical Scientific Literature (2512.02566v1)

Published 2 Dec 2025 in cs.CV and cs.AI

Abstract: There is a growing interest in developing strong biomedical vision-LLMs. A popular approach to achieve robust representations is to use web-scale scientific data. However, current biomedical vision-language pretraining typically compresses rich scientific figures and text into coarse figure-level pairs, discarding the fine-grained correspondences that clinicians actually rely on when zooming into local structures. To tackle this issue, we introduce Panel2Patch, a novel data pipeline that mines hierarchical structure from existing biomedical scientific literature, i.e., multi-panel, marker-heavy figures and their surrounding text, and converts them into multi-granular supervision. Given scientific figures and captions, Panel2Patch parses layouts, panels, and visual markers, then constructs hierarchical aligned vision-language pairs at the figure, panel, and patch levels, preserving local semantics instead of treating each figure as a single data sample. Built on this hierarchical corpus, we develop a granularity-aware pretraining strategy that unifies heterogeneous objectives from coarse didactic descriptions to fine region-focused phrases. By applying Panel2Patch to only a small set of the literature figures, we extract far more effective supervision than prior pipelines, enabling substantially better performance with less pretraining data.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.