Papers
Topics
Authors
Recent
2000 character limit reached

Vehicle Dynamics Embedded World Models for Autonomous Driving (2512.02417v1)

Published 2 Dec 2025 in cs.RO and cs.AI

Abstract: World models have gained significant attention as a promising approach for autonomous driving. By emulating human-like perception and decision-making processes, these models can predict and adapt to dynamic environments. Existing methods typically map high-dimensional observations into compact latent spaces and learn optimal policies within these latent representations. However, prior work usually jointly learns ego-vehicle dynamics and environmental transition dynamics from the image input, leading to inefficiencies and a lack of robustness to variations in vehicle dynamics. To address these issues, we propose the Vehicle Dynamics embedded Dreamer (VDD) method, which decouples the modeling of ego-vehicle dynamics from environmental transition dynamics. This separation allows the world model to generalize effectively across vehicles with diverse parameters. Additionally, we introduce two strategies to further enhance the robustness of the learned policy: Policy Adjustment during Deployment (PAD) and Policy Augmentation during Training (PAT). Comprehensive experiments in simulated environments demonstrate that the proposed model significantly improves both driving performance and robustness to variations in vehicle dynamics, outperforming existing approaches.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.