Papers
Topics
Authors
Recent
2000 character limit reached

Data Curation Through the Lens of Spectral Dynamics: Static Limits, Dynamic Acceleration, and Practical Oracles (2512.02409v1)

Published 2 Dec 2025 in cs.LG and cs.AI

Abstract: Large-scale neural models are increasingly trained with data pruning, synthetic data generation, cross-model distillation, reinforcement learning from human feedback (RLHF), and difficulty-based sampling. While several of these data-centric strategies reliably improve training efficiency and downstream performance, others fail to provide meaningful gains -- most notably self-generated synthetic data, which often increases dataset volume without enhancing model capability. We formalize data curation as reweighting the sampling distribution and map its effect onto the eigenstructure of the data-induced operator. Our first main result shows that \textbf{static pruning induces a bounded operator and therefore cannot change the spectral tail exponent}; it provides at most finite-region improvements and cannot alter asymptotic neural scaling. Our second result analyzes \textbf{time-dependent data curation}, showing that an ideal oracle capable of tracking spectral residuals and continuously re-normalizing the tail can provably accelerate learning -- although practical systems can only approximate this behavior.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.