Papers
Topics
Authors
Recent
2000 character limit reached

Multi-Domain Enhanced Map-Free Trajectory Prediction with Selective Attention (2512.02368v1)

Published 2 Dec 2025 in cs.CV and cs.AI

Abstract: Trajectory prediction is crucial for the reliability and safety of autonomous driving systems, yet it remains a challenging task in complex interactive scenarios. Existing methods often struggle to efficiently extract valuable scene information from redundant data, thereby reducing computational efficiency and prediction accuracy, especially when dealing with intricate agent interactions. To address these challenges, we propose a novel map-free trajectory prediction algorithm that achieves trajectory prediction across the temporal, spatial, and frequency domains. Specifically, in temporal information processing, We utilize a Mixture of Experts (MoE) mechanism to adaptively select critical frequency components. Concurrently, we extract these components and integrate multi-scale temporal features. Subsequently, a selective attention module is proposed to filter out redundant information in both temporal sequences and spatial interactions. Finally, we design a multimodal decoder. Under the supervision of patch-level and point-level losses, we obtain reasonable trajectory results. Experiments on Nuscences datasets demonstrate the superiority of our algorithm, validating its effectiveness in handling complex interactive scenarios.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.