Retrieval-Augmented Memory for Online Learning (2512.02333v1)
Abstract: Retrieval-augmented models couple parametric predictors with non-parametric memories, but their use in streaming supervised learning with concept drift is not well understood. We study online classification in non-stationary environments and propose Retrieval-Augmented Memory for Online Learning (RAM-OL), a simple extension of stochastic gradient descent that maintains a small buffer of past examples. At each time step, RAM-OL retrieves a few nearest neighbours of the current input in the hidden representation space and updates the model jointly on the current example and the retrieved neighbours. We compare a naive replay variant with a gated replay variant that constrains neighbours using a time window, similarity thresholds, and gradient reweighting, in order to balance fast reuse of relevant past data against robustness to outdated regimes. From a theoretical perspective, we interpret RAM-OL under a bounded drift model and discuss how retrieval can reduce adaptation cost and improve regret constants when patterns recur over time. Empirically, we instantiate RAM-OL on a simple online multilayer perceptron and evaluate it on three real-world data streams derived from electricity pricing, electricity load, and airline delay data. On strongly and periodically drifting streams, RAM-OL improves prequential accuracy by up to about seven percentage points and greatly reduces variance across random seeds, while on a noisy airline stream the gated variant closely matches the purely online baseline. These results show that retrieval-augmented memory is a practical and robust tool for online learning under concept drift.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.