Papers
Topics
Authors
Recent
2000 character limit reached

Intrusion Detection on Resource-Constrained IoT Devices with Hardware-Aware ML and DL (2512.02272v1)

Published 1 Dec 2025 in cs.NI

Abstract: This paper proposes a hardware-aware intrusion detection system (IDS) for Internet of Things (IoT) and Industrial IoT (IIoT) networks; it targets scenarios where classification is essential for fast, privacy-preserving, and resource-efficient threat detection. The goal is to optimize both tree-based ML models and compact deep neural networks (DNNs) within strict edge-device constraints. This allows for a fair comparison and reveals trade-offs between model families. We apply constrained grid search for tree-based classifiers and hardware-aware neural architecture search (HW-NAS) for 1D convolutional neural networks (1D-CNNs). Evaluation on the Edge-IIoTset benchmark shows that selected models meet tight flash, RAM, and compute limits: LightGBM achieves 95.3% accuracy using 75 KB flash and 1.2 K operations, while the HW-NAS-optimized CNN reaches 97.2% with 190 KB flash and 840 K floating-point operations (FLOPs). We deploy the full pipeline on a Raspberry Pi 3 B Plus, confirming that tree-based models operate within 30 ms and that CNNs remain suitable when accuracy outweighs latency. These results highlight the practicality of hardware-constrained model design for real-time IDS at the edge.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.