InstructLR: A Scalable Approach to Create Instruction Dataset for Under-Resourced Languages (2512.02213v1)
Abstract: Effective text generation and chat interfaces for low-resource languages (LRLs) remain a challenge for state-of-the-art LLMs to support. This is mainly due to the difficulty of curating high-quality instruction datasets for LRLs, a limitation prevalent in the languages spoken across the African continent and other regions. Current approaches, such as automated translation and synthetic data generation, frequently yield outputs that lack fluency or even orthographic consistency. In this paper, we introduce InstructLR, a novel framework designed to generate high-quality instruction datasets for LRLs. Our approach integrates LLM-driven text generation with a dual-layer quality filtering mechanism: an automated filtering layer based on retrieval-augmented-generation (RAG)-based n-shot prompting, and a human-in-the-loop validation layer. Drawing inspiration from benchmarks such as MMLU in task definition, InstructLR has facilitated the creation of three multi-domain instruction benchmarks: ZarmaInstruct-50k, BambaraInstruct-50k, and FulfuldeInstruct-50k.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.