Papers
Topics
Authors
Recent
2000 character limit reached

Generalised 4d Partition Functions and Modular Differential Equations (2512.02107v1)

Published 1 Dec 2025 in hep-th and math-ph

Abstract: We prove the equivalence of a class of generalised Schur partition functions $\mathcal Z_G(q;α)$ of 4d $\mathcal N=2$ superconformal gauge theories to contour integral representations of vector-valued modular forms of the type that arise in 2d rational conformal field theories (RCFT). Concretely, we consider the $USp(2N)$ theory with $2N+2$ fundamental hypermultiplets and analytically prove that $\mathcal Z_{USp(2N)}(q;α)$ satisfies an order-$(N+1)$ modular linear differential equation (MLDE) with vanishing Wronskian index, explaining how the parameter $α$ of the former determines the parameters of the latter. Several connections are made to characters of RCFTs including unitary ones. We then propose a two-parameter extension $\mathcal Z_{USp(2N)}(q;α,β)$ of the generalised Schur partition function. Finally, we relate the $α=-k$ specialisation to quantum monodromy traces ${\rm Tr}\,Mk$ and formulate a conjecture linking their $k$-dependence to MLDEs.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 19 likes about this paper.