Papers
Topics
Authors
Recent
2000 character limit reached

Seizure-NGCLNet: Representation Learning of SEEG Spatial Pathological Patterns for Epileptic Seizure Detection via Node-Graph Dual Contrastive Learning (2512.02028v1)

Published 19 Nov 2025 in eess.SP, cs.LG, and q-bio.NC

Abstract: Complex spatial connectivity patterns, such as interictal suppression and ictal propagation, complicate accurate drug-resistant epilepsy (DRE) seizure detection using stereotactic electroencephalography (SEEG) and traditional machine learning methods. Two critical challenges remain:(1)a low signal-to-noise ratio in functional connectivity estimates, making it difficult to learn seizure-related interactions; and (2)expert labels for spatial pathological connectivity patterns are difficult to obtain, meanwhile lacking the patterns' representation to improve seizure detection. To address these issues, we propose a novel node-graph dual contrastive learning framework, Seizure-NGCLNet, to learn SEEG interictal suppression and ictal propagation patterns for detecting DRE seizures with high precision. First, an adaptive graph augmentation strategy guided by centrality metrics is developed to generate seizure-related brain networks. Second, a dual-contrastive learning approach is integrated, combining global graph-level contrast with local node-graph contrast, to encode both spatial structural and semantic epileptogenic features. Third, the pretrained embeddings are fine-tuned via a top-k localized graph attention network to perform the final classification. Extensive experiments on a large-scale public SEEG dataset from 33 DRE patients demonstrate that Seizure-NGCLNet achieves state-of-the-art performance, with an average accuracy of 95.93%, sensitivity of 96.25%, and specificity of 94.12%. Visualizations confirm that the learned embeddings clearly separate ictal from interictal states, reflecting suppression and propagation patterns that correspond to the clinical mechanisms. These results highlight Seizure-NGCLNet's ability to learn interpretable spatial pathological patterns, enhancing both seizure detection and seizure onset zone localization.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.