Papers
Topics
Authors
Recent
2000 character limit reached

A Diffusion Model Framework for Maximum Entropy Reinforcement Learning (2512.02019v1)

Published 1 Dec 2025 in cs.LG, cs.AI, and stat.ML

Abstract: Diffusion models have achieved remarkable success in data-driven learning and in sampling from complex, unnormalized target distributions. Building on this progress, we reinterpret Maximum Entropy Reinforcement Learning (MaxEntRL) as a diffusion model-based sampling problem. We tackle this problem by minimizing the reverse Kullback-Leibler (KL) divergence between the diffusion policy and the optimal policy distribution using a tractable upper bound. By applying the policy gradient theorem to this objective, we derive a modified surrogate objective for MaxEntRL that incorporates diffusion dynamics in a principled way. This leads to simple diffusion-based variants of Soft Actor-Critic (SAC), Proximal Policy Optimization (PPO) and Wasserstein Policy Optimization (WPO), termed DiffSAC, DiffPPO and DiffWPO. All of these methods require only minor implementation changes to their base algorithm. We find that on standard continuous control benchmarks, DiffSAC, DiffPPO and DiffWPO achieve better returns and higher sample efficiency than SAC and PPO.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.