Papers
Topics
Authors
Recent
2000 character limit reached

PAI-Bench: A Comprehensive Benchmark For Physical AI (2512.01989v1)

Published 1 Dec 2025 in cs.CV

Abstract: Physical AI aims to develop models that can perceive and predict real-world dynamics; yet, the extent to which current multi-modal LLMs and video generative models support these abilities is insufficiently understood. We introduce Physical AI Bench (PAI-Bench), a unified and comprehensive benchmark that evaluates perception and prediction capabilities across video generation, conditional video generation, and video understanding, comprising 2,808 real-world cases with task-aligned metrics designed to capture physical plausibility and domain-specific reasoning. Our study provides a systematic assessment of recent models and shows that video generative models, despite strong visual fidelity, often struggle to maintain physically coherent dynamics, while multi-modal LLMs exhibit limited performance in forecasting and causal interpretation. These observations suggest that current systems are still at an early stage in handling the perceptual and predictive demands of Physical AI. In summary, PAI-Bench establishes a realistic foundation for evaluating Physical AI and highlights key gaps that future systems must address.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.