Papers
Topics
Authors
Recent
2000 character limit reached

Chain-of-Ground: Improving GUI Grounding via Iterative Reasoning and Reference Feedback

Published 1 Dec 2025 in cs.AI, cs.CL, and cs.CV | (2512.01979v1)

Abstract: GUI grounding aims to align natural language instructions with precise regions in complex user interfaces. Advanced multimodal LLMs show strong ability in visual GUI grounding but still struggle with small or visually similar targets and ambiguity in real world layouts. These limitations arise from limited grounding capacity and from underuse of existing reasoning potential. We present Chain of Ground CoG a training free multi step grounding framework that uses multimodal LLMs for iterative visual reasoning and refinement. Instead of direct prediction the model progressively reflects and adjusts its hypotheses leading to more accurate and interpretable localization. Our approach achieves 68.4 accuracy on the ScreenSpot Pro benchmark an improvement of 4.8 points. To measure real world generalization we introduce TPanel UI a dataset of 420 labeled industrial control panels with visual distortions such as blur and masking. On TPanel UI Chain of Ground improves over the strong baseline Qwen3 VL 235B by 6.9 points showing the effectiveness of multi step training free grounding across real world and digital interfaces. These results highlight a direction for unlocking grounding potential through structured iterative refinement instead of additional training.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.