Papers
Topics
Authors
Recent
2000 character limit reached

Heuristic algorithms for the stochastic critical node detection problem (2512.01497v1)

Published 1 Dec 2025 in cs.DM and cs.LG

Abstract: Given a network, the critical node detection problem finds a subset of nodes whose removal disrupts the network connectivity. Since many real-world systems are naturally modeled as graphs, assessing the vulnerability of the network is essential, with applications in transportation systems, traffic forecasting, epidemic control, and biological networks. In this paper, we consider a stochastic version of the critical node detection problem, where the existence of edges is given by certain probabilities. We propose heuristics and learning-based methods for the problem and compare them with existing algorithms. Experimental results performed on random graphs from small to larger scales, with edge-survival probabilities drawn from different distributions, demonstrate the effectiveness of the methods. Heuristic methods often illustrate the strongest results with high scalability, while learning-based methods maintain nearly constant inference time as the network size and density grow.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.